LC-MS Analysis

LC-MS of Whole Protein?

- LC will deconvolute your protein mixture
- Separated proteins are then sent to MS
 - Mass/Charge
 - Relative Abundance
- Highly accurate, high-tech SDS-PAGE?
- Similar concerns as with 2D Gel-MS
- Solution: Tryptic Peptides
Low Resolution LC-MS

- Collect fractions from your favorite LC
- Digest sample with trypsin
- Analyze representative samples
 - MALDI-TOF
 - ESI-Quadrupole
- If fractions are complex, signal is complex
- Need better separation techniques

In-Line HPLC-MS

- HPLC gives high resolution separations
- Electrospray ionization is compatible with HPLC
 - Nanospray ionization
 - Orthogonal ESI
 - Effluent splitters
- HPLC→Trypsin→MS is inefficient, in-line better
- Digest entire sample with trypsin

WHAT?!?!?
Tryptic Peptide LC-MS

- Protein mixtures digested with trypsin
 - Cannot be whole cell extract
 - For best instruments, ~400-500 proteins MAX

- Tryptic peptides are separated by HPLC

- Peptide MW is determined by ESI-MS

- Bioinformatics strikes again
 - *In Silico* tryptic digest of all proteins by organism
 - Complex MW search to find multiple matching peaks

- On average ~200 proteins “ID’d” in LC-MS

Sample Complexity

- Sub-cellular fractionation
 - Nuclear
 - Membrane
 - Ribosome Associated
 - Mitochondrial

- SEC – Additional size info helps protein ID

- Affinity chromatography – protein enrichment

- CX/AX after trypsin – orthogonal separation
LC-MS/MS & LC/LC-MS/MS

- Adding additional dimensions provides:
 - Higher processing capability
 - Additional sequence information
 - Increase specificity/speed of protein ID

- Additional dimensions requires:
 - Additional processing steps
 - More automation of sample handling
 - More complicated instrumentation
 - More expensive instrumentation
 - More elaborate bioinformatics programs