Liquid Chromatography

Chromatography:
Processes which allow the resolution of solute mixtures by selective fixation and liberation on a solid support with the aid of directional fluid flow

Mikhail Tswett, 1901-1906
- Separation of plant pigments on CaCO₃ and alumina powder
- Tswett = Color . . .

Color Writing….?
Thin Layer Chromatography

- Stationary Phase
 - Thin layer of particles adhered to plate

- Mobile Phase
 - Solvent in bottom of tank/reservoir
 - Driven up plate by capillary action

- Separation is driven by partitioning between stationary and mobile phases

TLC Apparatus
Column Chromatography

- Stationary phase is packed into a column
- Fluid flow is driven by pumping or gravity
- Same basic biophysical principles underlie both column and thin layer chromatography

Chromatography Flavors

- Partition Chromatography
 - “Normal” phase
 - Reverse phase
- Ion Exchange Chromatography
 - Anion exchange
 - Cation exchange
- Size Exclusion Chromatography
- Affinity Chromatography
- Solid Phase Extraction
Chromatography Equations

- Equilibrium partition ratio, $K_x = \frac{[X]_s}{[X]_m}$
 - $\left(\frac{\text{Amt } X_s}{\text{Amt } X_m}\right) \times \left(\frac{V_m}{V_s}\right)$
 - $k' \times \beta = \text{‘capacity factor’} \times \text{‘phase ratio’}$

- Capacity factor, $k' = \frac{(t_r - t_m)}{t_m}$ or $\frac{t'_r}{t_m}$
 - $t_r = \text{retention time}, t'_r = \text{adjusted retention time}$
 - $t_m = \text{mobile phase travel time}$

- Phase ratio, $\beta = \frac{r_c}{2d_f}$
 - $r_c = \text{column radius}$
 - $d_f = \text{film thickness}$

Retention Time

Chromatography Equations

- Selectivity, \(\alpha = \frac{K_B}{K_A} = \frac{(t'_r)_B}{(t'_r)_A} \)
 - Ratio of partition constants of two components
 - The amount by which two components can be separated in a given mobile phase
 - Different for different stationary phases

- Resolution, \(R_s = \frac{2d}{[(w_b)_A + (w_b)_B]} \)
 - \(d \) = distance of peak separation
 - \(w_b \) = peak width at the base
 - Measure of column efficiency

Theoretical Plate Model

- Adapted to chromatography by A.J.P. Martin and R.L.M. Synge in 1941

- Based on fractional distillation theory
 - Series of sequential, equilibrium partitioning
 - Actually continuous, not-quite-equilibrium

- \(N \): Number of Theoretical Plates

- \(H \): Height Equivalent to a Theoretical Plate
Number of Theoretical Plates

- \(N = 16\left(\frac{t_r}{w_b}\right)^2 = 5.54\left(\frac{t_r}{w_h}\right)^2 \)
 - \(w_b \) = base peak width
 - \(w_h \) = peak width at half height
- \(R_s = \left(\frac{\sqrt{N}}{4}\right)(\alpha - 1)(k'/1 + k') \)
 - \(k' \) here is the average capacity factor for two closely eluting peaks
- Both \(N \) and \(R_s \) are measures of efficiency
 - \(N \) does not require two peaks
 - \(N \) is independent of relative selectivity

Height Equivalent to a T. P.

- \(H = \frac{L}{N} \)
 - \(L \) = length of the column
 - Assigns an arbitrary ‘height’ based on physical length of (vertical) column
- Those Dutch…..
 - Van Deempter Equation, the ABCs of \(H \)
 - Describe how column variables affect \(H \) [\(N \)]
 - \(H = A + B/u + Cu \)
 - \(u \) = linear mobile phase velocity
The Van Deempter Terms

A – *The Multipath Term*
- Accounts for varying particle paths
- Results in band broadening
- Constant for all mobile phase velocities

B – *The Longitudinal Diffusion Term*
- Accounts for random walk diffusion
- Occurs in both mobile & stationary phases
- Faster the mobile phase, the less time molecules have to diffuse randomly
- Term’s effects on H are inversely proportional to mobile phase velocity, u
The Van Deempter Terms

- **C – The Mass Transfer Term**
 - Movement between phases is not equilibrium at every point along column
 - Faster mobile phase allows less time to get closer to phase equilibrium
 - A fraction of analyte moves ahead without diffusing into stationary phase
 - A fraction of analyte lags behind in stationary phase while the bulk moves on

The Van Deempter Plot

A = 0, C_s = ‘C’ term for stationary phase, C_m = ‘C’ term for mobile phase
Broadening Due To Mixing

- Detector Mixing
 - Detector is designed for large volume/low flow
 - Column generates low volume/fast flow
 - Close peaks will resolve on column and unresolve in detector chamber

- The Dreaded Air Bubble
 - Air bubbles in the column can disrupt packed bed or leave a void upon redissolution
 - These voids become small in-column mixing chambers and result in loss of resolution

Other Peak Distorting Factors

- Sample Overload
 - Like a huge rush of people into a store on the morning of a big sale
 - Generates a leading peak shape

- Additional Retention Sites
 - A limited number of additional sites which bind sample, in addition to desired retention, will retard progress through column
 - Generates a trailing peak shape