An extension of the Minute Virus of Mice tissue tropism

Igor Etingov a,⁎, Refael Itah a,1, Michal Minçberg a,1, Ayelet Keren-Naus a,1, Hyun-Joo Nam b,2, Mavis Agbandje-McKenna b,2, Claytus Davis a,1

a Department of Virology and Developmental Molecular Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
b Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA

A R T I C L E I N F O

Article history:
Received 21 March 2008
Returned to author for revision
6 May 2008
Accepted 25 June 2008
Available online 5 August 2008

Keywords:
Minute Virus of Mice
MVM
Parvovirus
Host range
Adaptation
Quasispecies

A B S T R A C T

Well-defined tissue tropism makes Autonomous Parvoviruses a valuable model for studies of virus-cell interactions and gene therapy research. We developed a new Minute Virus of Mice variant, different from the known prototype (MVMp) and immunosuppressive (MVMi) strains. The new virus variant, designated F1, was isolated from the culture of semi-permissive Fisher Rat Fibroblasts, F111, infected with MVMp. The F1 genome carried point mutations in regions known to determine the mutually restricted host ranges of MVMp and MVMi. In F111 cells, F1 cytotoxicity, gene expression and multiplication were significantly higher compared to MVMp. Conversely the wild-type virus propagated in MVMp-permissive cells more efficiently than the F1. Reversion of the F1-specific mutations to wild-type MVMp sequence, following reverse-passaging of the mutant virus in MVMp-permissive cells, confirmed a specific adaptation of the F1 virus to F111 cells. Considerable divergence in tissue specificities between the wild-type and mutant viruses was demonstrated in vivo.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Minute Virus of Mice (MVM) belongs to the Autonomous Parvoviruses (APVs), some of the smallest known animal viruses. Their main common features are a single-stranded DNA genome of about 5.1 kb with small terminal palindromes and icosahedral capsids approximately 26 nm in diameter (Tattersall, 2006). Two APV properties have drawn a lot of interest during the last three decades. The dependence of APVs on both cellular proliferation factors, and the differentiation of host cells expressed throughout S-phase, are necessary for the process.

The MVM genes are organized into two overlapping transcription units with promoters located at map units (m.u.) 4 (P4) and 38 (P38) (Pintel et al., 1983) transcribing three main mRNAs. P4 controls synthesis of R1 (4.8 kb) and R2 (3.3 kb), while P38 regulates R3 (3 kb) production. R1 and R2 are produced from the same pre-mRNA, but R2 lacks the large intron between m.u. 10 and 39. All three mRNAs undergo splicing of the small intron between m.u. 46 and 48 (Qiu et al., 2006). NS1 (83 kDa) and NS2 (24 kDa) are translated from R1 and R2 respectively (Cotmore and Tattersall, 1986). Both of these are necessary for virus replication and cytotoxicity (Nuesch, 2006). All capsid proteins are synthesized from R3 transcripts. VP1 (83 kDa) and VP2 (64 kDa) are produced by alternative splicing, while VP3 (comprising about 90% of virus full capsids) is generated by posttranslational cleavage following DNA packaging (Tattersall et al., 1977).

The P4 and P38 promoters possess similar basic promoter elements: SP1 binding sites, TATA boxes, and putative initiator sequences (Lorson and Pintel, 1997). P4 contains several additional regulatory sequences, and may be expressed in the absence of viral proteins
[Faisst et al., 1994]. In contrast, P38 exhibits exceptionally low basal expression, but can be upregulated (~100 fold) by NS1, which acts as a transcriptional activator (Doerig et al., 1988), binding to a specific DNA regulatory sequence at the promoter (Cotmore et al., 1995).

MVM serves as a good model of parvoviral strain-specific variation. The prototype (MVMp) and immunosuppressive (MVMi) strains efficiently propagate in cultured mouse fibroblasts and L-lymphocytes, respectively. Their host ranges are reciprocally restricted, although they are serologically indistinguishable and exhibit only ~3% DNA sequence divergence (Tattersall and Bratton, 1983). Significant differences in the tissue tropisms of these two MVM strains were also found in newborn mice (Kinsey et al., 1986) and mouse embryos (Itah et al., 2004b).

The mechanism restricting infection of MVMp and MVMi in each other’s host cells is not fully understood, but is considered to be intracellular, rather than occurring on the outer cell membrane (Spalholz and Tattersall, 1983; Previsani et al., 1997). There are at least two kinds of host range determinants, one located in capsid coding region and the other in the large-intron 3’ splice site, that are responsible for MVM fibrotropism. Recombinant MVMi carrying two amino acids specific to MVMp in the capsid coding region (at the VP2 positions 317 and 321) was shown to infect fibroblasts more than 100 times better than the original MVMi (Gardiner and Tattersall, 1988).

Either of these substitutions, complemented with additional changes (defined as second-site mutations), was shown to confer fibrotropism on MVMi. Structurally, the 317 and 321 VP2 amino acids, as well as the second-site mutations are associated with a dimple-like depression located at the icosahedral two-fold axis in the MVM capsid. This site was proposed to be involved in the interaction of the viral particles with sialic acid, crucial for infection (Agbandje-McKenna et al., 1998; López-Bueno et al., 2006a). The second host determinant establishes the ability of the virus genome to express NS2. A silent guanine to cytosine variation results (Faisst et al., 1994). In contrast, P38 exhibits exceptionally low basal expression, but can be upregulated (~100 fold) by NS1, which acts as a transcriptional activator (Doerig et al., 1988), binding to a specific DNA regulatory sequence at the promoter (Cotmore et al., 1995).

Results

Adaptation of MVMp to rat fibroblasts (F111 cells)

We tested the ability of MVMp to extend its tropism to a non-murine, semi-permissive host cell-type, F111 rat fibroblasts. These cells were infected with 2 PFU/cell of transfection-derived MVMp (Materials and methods). A moderate cytopathic effect (CPE) appeared 3 days post infection (dpi), followed by quick culture recovery (4–5 dpi) and subsequent normal cell growth. However, despite normal cell growth, cell cultures at 14 dpi contained virus — as determined by plaque assays in A9 cells. Infection of naïve F111 cells with 14 dpi virus led, once again, to mild cell death followed by full recovery of the culture. DNA sequencing of F111-extracted viral samples revealed no differences from the wild-type (WT) MVMp genome.

We hypothesized that increased divergence of the initial viral population could increase chances of successful selection of adaptive changes. We reasoned that multiple cycles of infection in a permissive host should create the high genetic heterogeneity that has been reported for the parvoviruses (López-Bueno et al., 2006b). We therefore cultured transfection-derived MVMp virus through 5 successive passages in permissive A9 cells (Materials and methods). F111 cells infected with this A9-passaged virus (MVMp-A9) exhibited no differences in CPE compared to infection with the transfection-derived MVMp. However, virus extracted following 14 days of prolonged MVMp-A9 infection in F111 cells (designated as MVMp-F111) was capable of effectively destroying naïve F111 cell cultures, unlike transfection-derived MVMp or MVMp-A9 (Supplementary material, Fig. 8).

Purification and sequencing of F111-adapted virus

Sequencing of MVMp-F111 led to ambiguous results, presumably because of genomic heterogeneity. Therefore virus was purified both by end-point dilution in F111 cells and plaque purification in A9 cells. 14 of 20 plaque-purified samples and all end-point dilution isolates destroyed F111 cultures upon infection. The plaque purification results likely reflected genomic heterogeneity of the MVMp-F111 population, whereas only subpopulation/s with the ability to destroy F111 culture could be isolated by end-point dilution in these cells. Viral DNA from 5 plaque-purified samples, with the ability to kill F111 cells, and 5 end-point dilution isolates were sequenced and a single mutational pattern, designated F1, was revealed (Table 1). 4 of 5 identified mutations occurred on the capsid protein coding sequence, leading to amino acid changes. One mutation, G1955A, was located within the NS1 coding sequence, near the large splice branch-point, and within the consensus SP1 binding site of the P38 promoter. With respect to translation, the substitution is silent (Fig. 1A).

Locations of F1 mutations on the 3D structure of MVMp capsid (VP2)

As shown in Fig. 1B, the four mutations in F1 that resulted in amino acid changes in VP regions of the coat protein (Table 1) were mapped onto the MVMp structure determined by X-ray crystallography (Kontou et al., 2005), in order to evaluate the structural impact of the changes at a tertiary and quaternary protein structure level. Residue A334, buried inside the capsid, has a side-chain that points into a hydrophobic pocket and is involved in the stabilization of three-fold inter-subunit interactions. The three remaining amino acid residues, E384, N554 and I578, are located on the capsid surface, clustering around the depressions at the icosahedral two-fold axis of the MVM capsid.

<table>
<thead>
<tr>
<th>Nucleotide position (bp)</th>
<th>Nucleotide change</th>
<th>VP change (amino acid)</th>
<th>VP1 amino acid position</th>
<th>VP2 amino acid position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>G to A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3793</td>
<td>G to A</td>
<td>Ala to Thr</td>
<td>476</td>
<td>334</td>
</tr>
<tr>
<td>3944</td>
<td>A to C</td>
<td>Glu to Ala</td>
<td>526</td>
<td>384</td>
</tr>
<tr>
<td>4453</td>
<td>A to C</td>
<td>Asn to Asp</td>
<td>696</td>
<td>534</td>
</tr>
<tr>
<td>4525</td>
<td>A to C</td>
<td>Ile to Leu</td>
<td>720</td>
<td>578</td>
</tr>
</tbody>
</table>

PCR amplification products of the packaged virus DNA were sequenced (Materials and methods). Positions of nucleotide changes are indicated according to the GenBank MVMp sequence (accession number J02275). Amino acid changes are indicated relative to GenBank MVMp sequences (NP_041244.1 and NP_041248.1 for VP1 and VP2, respectively).
effects of the sialic acid receptor binding site on the capsid, in the vicinity of a structurally mapped putative sialic acid receptor binding site in MVMp (Fig. 1B). E384 is located in a surface loop at the shoulder of the protrusions at the icosahedral three-fold axes and is involved in interactions with S388 and P392 that are likely required for stabilizing the conformation of their loop. Residue S388 is an MVMp/MVMI differing residue that has not yet been implicated in their tissue tropism differences. N554 and I578 are located on the wall and floor, respectively, of the two-fold dimple depression on the capsid surface, also within the vicinity of the sialic acid receptor binding site (Fig. 1B) (López-Bueno et al., 2006a).

CAT reporter gene assay of the mutant P38 promoter

We hypothesized that the silent substitution, G1955A (Fig. 1A), would affect viral gene expression, as it lies within the consensus SP1 binding site of the P38 promoter. To test this we transfected mutant and WT CAT reporters into different host cells. Two promoter/reporter constructs containing the CAT sequence under control of a WT (pP38-[WT]) or mutant (pP38-[1955]) P38 promoter were made. An additional plasmid, pNS, expressing the viral NS1 protein, which activates P38 expression (Doerig et al., 1988), was also constructed (Materials and methods). pNS and the P38-reporter plasmids were co-transfected into different host cells and CAT activity measured after 48 h (Fig. 2). The results showed that the 1955 substitution caused a marginal, but sometimes significant, reduction in P38 activity in all checked cell-types, including F111 cells (Fig. 2). The data suggest that this mutation likely contributes to F1 adaptation by some other way than altering its P38 expression in F111 rat fibroblasts, such as an elevated accumulation of NS2.

Virus quasispecies during culture and host cell-type shifts

To identify and follow the relative frequencies of the characterized sequence variants during propagation in different cell cultures, we adapted an ARMS allele-specific PCR technique (Newton et al., 1989). For each variant location, selective and unselective ARMS primers were designed (Table 3) and used for allele-specific PCR. It was possible to specifically amplify WT or mutant plasmid DNA templates in quantities ranging from 0.1 fg (~20 plasmid molecules) to 10 ng (~2 x 10⁹ molecules) and effectively identify alleles in mixed WT and mutant DNA pools in ratios of 1:10⁶, for each of the variant loci (Fig. 3A). Although the assay is not strictly quantitative we consistently obtained easily identifiable distinctions among quantities of PCR products when significantly different template amounts were used for reactions, indicating that the ARMS could reliably assay divergence in quasispecies content for each variation identified in our viral samples.

The calibrated allele-specific ARMS PCR was used to characterize the sequence variants present in populations of viruses isolated from our culture experiments. The initial selection experiments indicated that F1 mutant virus arose only from MVMp that had been passaged in A9 cells (MVMp-A9), not from virus produced directly following transfection of the infectious cloned MVMp (MVMp-pMM984) (Materials and methods). We hypothesized that MVMp adaptation to the F111 cells occurred through selection of quasispecies present in the MVMp-A9 population. We therefore characterized the frequency of the sequence variants in the different viral stocks by ARMS. The data show that the variants selected during F111 cell culture were present in MVMp-A9, but not in MVMp-pMM984 (Fig. 3B). Although MVMp-F111 virus consisted of mixed WT and mutant subpopulations, only mutant loci were detected in its end-point dilution isolate (F1-EPD). Subsequent propagation of this isolate in F111 cells to obtain sufficient quantities of the normalized CAT activity achieved by pP38-[WT]-CAT in A9 cells. Error bars show the standard deviation for 3 independent replicates.

![Fig. 1. Representation of alternations found in the F1 mutant. (A) P38 promoter region.](image-url)
quantity of the mutant virus (F1-stock) did not cause any detectable reversion of the F1 mutations to WT (Fig. 3B).

If the F1 mutations that became predominant following culture in F111 rat fibroblasts were an adaptive response to a poorly permissive host, we reasoned that these changes would be preserved during F1 propagation in these cells, but that repeated infections of known MVMp hosts cells with F1 would result in reversion — the appearance and enrichment of a WT MVMp subpopulation. To check this hypothesis we passaged F1 in A9, NB324K, PyF and F111 cells 5 times. 2–3 passages (4–6 cycles of infection) of virus in all of these host cell-types led to the appearance of quasispecies, with reversion toward the WT MVMp pattern (Fig. 3C). These subpopulations were continuously enriched during subsequent passages in A9 and NB324K cells, and clearly dominated the viral populations after the 5th passage (~10 infection cycles). Passaging of F1 in PyF cells also resulted in the appearance of WT sequence. However, after 5 passages, (Fig. 3C) subpopulation/s carrying F1 mutations still composed a significant fraction of the viral sample and after further 5 passages F1-specific sequence was still clearly present (data not shown). Although quasispecies with WT sequence appeared also during the F1

Fig. 3. ARMS calibration and analysis of virus samples. In each allele-specific PCR (35 cycles), a selective primer for either wild-type (WT) or mutant (M) template, along with the conventional unselective primer (Table 3), was used. Results of tests for 1955 and 4453 bp positions are shown. Reaction products and 100 bp DNA Ladder (New England Biolabs) were resolved by 1.5% agarose gel electrophoresis. (A) ARMS specificity test. Plasmids with cloned wild-type MVMp DNA (pP38-WT, pVP-WT), plasmids carrying F1 mutant pattern (pP38-1955, pVP-F1), or plasmid mixtures in the indicated quantities were tested with ARMS. (B) Presence of the wild-type and mutant DNA in viral samples. The indicated viral samples (see text) were checked with ARMS. (C) Sequence selection during serial passage of mutant virus in different host cell-types. F1 mutant virus was serially passaged 5 times (1P–5P) in the indicated cell lines. At each passage, 4 × 10^5 cells were infected with 0.2 PFU/cell. After cell culture death, virus was extracted and ARMS performed.
propagation in F111 cells, their level was low and F1 remained dominant (Fig. 3C). Although allele compositions are illustrated for the variant loci at nt 1955 and 4453, similar results were obtained for the other alleles at nt 3793, 3944 and 4525 (data not shown).

Infection characteristics of F1 in comparison with wild-type MVMp

To examine the effects of the suite of selected mutations on infectivity, we characterized the responses of different host cells to infection by parental and variant viruses. A cell survival test (Fig. 4) showed that F1-killing of A9, NB324K and PyF cells was indistinguishable from WT MVMp at high MOI (2 PFU/cell). However, infections with low MOI (0.2 PFU/cell) demonstrated a significant delay in the destruction of these cultures by F1 compared with WT MVMp (Fig. 4). F1 also exhibited significantly lower infectious viral particle production in MVMp-permissive cells compared to WT MVMp (Table 2). A diminished ability of F1 to propagate in A9 and NB324K cells was verified by comparing the plaque morphology of the WT and mutant viruses on monolayers of these cells. Plaques formed by F1 were significantly smaller than those formed by MVMp (Supplementary material, Fig. 9). Infections of F111 cells confirmed that only F1 was capable of destroying these cells (Fig. 4), and that F1 propagates in these rat fibroblasts significantly more efficiently than WT MVMp (Table 2).

Host-dependent differences in viral products during MVMp and F1 infection

To better understand the effects of the naturally selected variations on the viral lifecycle we compared some of the major parameters of MVM infection by F1 and the WT virus. Both virus strains were used to infect rat F111 and PyF cells, as well as the typical WT MVMp hosts, A9 and NB324K cells. Low molecular weight DNA was extracted at 1 and 24 h following infection and MVM genomic DNA detected by Southern blot (Fig. 5). As might be expected from selection and cytotoxicity results in F111 rat fibroblasts, the level of F1 DNA replication forms (RF) in these cells was significantly higher than that of wild-type MVMp. Vice versa, the infection of MVMp-permissive cells A9 and NB324K showed preferential WT virus replication (Fig. 5, 24 hpi assays). Cell extracts prepared 1 h after infection contained similar quantities of the virus genomic single-stranded (ss) DNA (Fig. 5, 1 hpi assays). The source of ssDNA at this early stage of infection, in the absence of any detectable RF could be only MVM packaged genomic DNA, i.e. the inoculum, indicating that there is no significant difference between the binding abilities of WT and mutant viruses to the surfaces of any of the checked cell-types. The similar levels of ssDNA 1 h after infection and the considerable differences in replication levels 24 hpi suggest that the infections of WT MVMp in F111 and the F1 variant in A9 and NB324K cells are reciprocally impaired at some stage between capsid attachment to a cell and virus DNA replication. Finally it was likely that this difference is transformation-dependent; WT MVMp replication was moderately higher in PyF cells than the replication of F1.

We characterized the products of MVMp and F1 gene expression by Northern and Western analyses at 14 and 24 h post-infection respectively (Fig. 6). Higher levels of F1 genome expression products

Table 2

<table>
<thead>
<tr>
<th>Virus</th>
<th>Cells</th>
<th>A9 (±4.3)</th>
<th>NB324K (±0.3)</th>
<th>PyF (±9.1)</th>
<th>F111 (±2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVMp</td>
<td>1120 (±44)</td>
<td>1051</td>
<td>670 (±19)</td>
<td>0.4 (±0.02)</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>88 (±4.2)</td>
<td>69 (±2)</td>
<td>310 (±9.1)</td>
<td>21 (±0.7)</td>
<td></td>
</tr>
</tbody>
</table>

10^6 cells of each type were infected by WT MVMp or the F1 mutant with a MOI 2 PFU/cell. 3 dpi virus was extracted and plaque assays were performed in A9 cells (Materials and methods). Numbers in brackets are standard deviations calculated from 5 independent infections.
from both P4 and P38 promoters) were observed in F111 cells, while significantly increased amounts of MVMp mRNA and proteins were expressed in A9 and NB324K cells. MVMp was found to have only slightly increased expression from either of its promoters compared to F1 in PyF cells (Fig. 6). WT MVMp expression of R2 mRNA and NS2 protein (synthesized from R2) appeared to be particularly weakened in F111 rat fibroblasts, even as F1 infection produced significantly higher quantities of R2 and NS2 in these cells (Figs. 6A and B, respectively).

Differences between the in vivo host ranges of MVMp and F1

Because of the limited infection of Minute Virus of Mice in normal adult mice, we used an in utero injection technique (Itah et al., 2004a) to characterize differences in the host cell-type range in vivo. Viral inoculation of mouse embryos at 12 dpc revealed infection of bone primordia by F1, that unlike the parental MVMp was accompanied by significant tissue destruction (Fig. 7A). In contrast, F1 exhibited reduced infection of skin fibroblasts (Fig. 7B) and no apparent infection in either CNS or PNS (data not shown), tissues that both exhibited sporadic infection with MVMp (Itah et al., 2004b).

A preliminary study of MVMp and F1 infection, using the neonate oronasal inoculation model (Kimsey et al., 1986) also indicated some divergence between MVMp and F1 infection patterns (Supplementary material, Fig. 10).

Discussion

Extension of MVM tropism as a result of quasispecies enrichment

Minute Virus of Mice has been shown to readily adapt to new host environments both in cell culture (Ron et al., 1984) and in vivo (López-Bueno et al., 2003). Darwinian selection apparently leads to a shift in predominant virus variants in MVM populations as a result of environmental constraints such as a new host or treatment with antibodies against MVM capsid. We show here that the same principle could be exploited to adapt MVM to non-murine, poorly permissive cells. F111, a rat fibroblast cell-line, is restrictive (semi-permissive) for MVMp (Guetta et al., 1990). The prolonged infection of F111 with MVMp led to the predominance of an adapted variant, designated as F1. In contrast to the parental MVMp, F1 destroyed F111 fibroblast cultures.

The analysis was informative with respect to the mechanics and speed of the adaptive process. F1 arose in F111 cells infected with MVMp only if the inoculating MVMp was derived from successive infection cycles in a permissive host. F1 did not arise in F111 cells infected with standard transfection-derived MVMp (Materials and methods). We suggested that the successful enrichment and eventual domination of the F1 mutant was due to the presence of quasispecies in the initial virus sample used for the infection of F111 cells. This was confirmed by allele-specific PCR (ARMS), that demonstrated the presence of all F1-specific nucleotide substitutions in A9 passaged MVMp, but not in transfection-derived virus samples.

Finally, F1 adaptation to the F111 cells was a coevolutionary process. Persistently infected rat fibroblasts sustained a normal rate of cell growth, without any signs of CPE, for the entire period of the persistent infection (we maintained the infected culture growth up to 2 months), with continuous production of the mutant virus, revealing the resistance of the culture to this mutant. In contrast, virus extracted from such cultures destroyed naive F111 cells.

The F1 mutant genome

The locations of the F1 mutations in the MVM genome indicate that adaptive determinants for F1 in rat fibroblast F111 cells are in
the same region of the capsid responsible for determining the reciprocal tropism of the fibrotropic (MVMp) and lymphotropic (MVMi) strains of MVM, and adjacent to residues identified in virulent MVMp mutants isolated from SCID mice (López-Bueno et al., 2006a). Two of four VP F1-specific mutations (334 and 384 VP2 amino acid positions) are located within the MVM fibrotropic determinant region (Gardiner and Tattersall, 1988), with the E384 side-chain performing a stabilizing role for a surface loop through its interactions with the main-chain of MVMi/p differing residue S388 contained within this loop. Mutations of residues in a homologous loop to this one in canine parvovirus at amino acid positions K387A and T389 to alanine in CPV have been reported to result in a non-infectious CPV phenotype (Parker and Parrish, 1997). The remaining two residues, N554 and I578 are structurally clustered adjacent to other MVMi/p differing residues, VP2 residue mutations (399, 460, 553, 558) known to be involved in adaptation of MVMi to A9 fibroblasts and MVMp amino acids (362, 368, 551, 575) that mutate in SCID mice to confer a virulent phenotype to this otherwise non-pathogenic virus (Agbandje-McKenna et al., 1998, Kontou et al., 2005, López-Bueno et al., 2006a). These observations suggest that local capsid surface topology changes, resulting from these mutations of the MVMp residues to those observed in F1, facilitate host range adaptation. The location of all the F1 capsid mutations at or close to the capsid surface pocket where MVM is predicted to binds its sialic acid receptor further supports the possibility of extension of MVM host range by adaptation of its structural tissue tropism and pathogenicity determinants to a new host.

Despite the location of the F1 residues close to the MVM receptor binding site, binding affinity does not appear to be altered in the mutant virus as determined by the similar levels of genomic DNA isolated from infected cells 1 h post infection (Fig. 5). This observation supports a restrictive block post entry that involves a capsid-mediate interaction/dynamic that is not yet identified as is the difference between WT MVMp and MVMi. This phenotype differs from that observed for MVMp adaptation to a virulence phenotype, which resulted in decreased affinity for the cell surface sialic acid, and an increased viral spread consistent with a large plaque phenotype compared to the WT MVMp (López-Bueno et al., 2006a; Nam et al., 2006). Significantly, the localization of the VP2

Fig. 7. Histological distribution of MVMp and F1 infections in mice embryonic tissues. Embryos were injected through uterine wall and further processed as described in Materials and methods. The sample data is represented in pairs of DIC images (left panels) and Fluorescence images, showing distribution of viral capsids (right panels). Typical transverse sections through primordial bone (A) and skin (B) tissues are represented.
residues implicated in the F1 adaptation at the icosahedral two-fold axis is consistent with other tissue tropism and pathogenicity determinants for parvoviruses in general (reviewed in Kontou et al., 2005), and further implicates the parvoviral two-fold region in this phenomenon.

The silent G1955A substitution is found in the region known to regulate large-intron splicing (Pintel et al., 1995). Substitutions within this region have been shown to affect large-intron splicing in a cell-dependent manner. MVMV carrying one of the silent G1967A or G1970A was demonstrated to increase NS2 levels in A9 fibroblasts (D’Abramo et al., 2005). The interaction between adenosine at the splicing branch point and the U2 snRNA is crucial for splicing (Moore et al., 1993). The G1970A substitution in MVMV was demonstrated to significantly improve large-intron splicing and increase both R2 and NS2 levels in A9 fibroblasts by modifying the interaction with endogenous U2 snRNA (Choi et al., 2005). It is therefore similarly possible that the substituted adenosine at nt 1955 alters binding of U2 snRNA to the large-intron splicing branch point in F111 rat fibroblasts. The significantly enhanced production of R2 and NS2 by F1 in F111 supports this hypothesis. NS2 is known to be involved in several MVM functions such as virus DNA replication (Naeger et al., 1990), mRNA translation (Naeger et al., 1993), nuclear egress of progeny virions in mouse cells (Eichwald et al., 2002) and particle assembly (Cotmore et al., 1997).

Current study does not reveal what mutation/s or their combination can be sufficient for the virus–host range switch from mouse to rat fibroblasts. Lymphotrophic MVMi was demonstrated to require at least two capsid amino acid alternations associated with sialic acid binding region in order to adapt to A9 fibroblasts (Ball-Goodrich and Tattersall, 1992; Agbandje-McKenna et al., 1998). Alternatively fibrotropism can be conferred to MVMi by combination of one of the silent substitutions facilitating NS2 production (G1967A or G1970A) and one of the additional VP2 amino acid changes at the position 399 (D399G or D399A) (D’Abramo et al., 2005). Thus we think that the extension of our study possibly can reveal very limited number of genomic changes in MVM genome, conferring trans-species host range change to the virus.

Specificity of the F1 host range

Several lines of evidence indicate considerable differences between host-range properties of the WT MVMp and the F1 mutant. In vitro, F1 infection at even a low multiplicity (0.2 PFU/cell) efficiently destroyed F111 rat fibroblasts culture, whereas infection of these cells with a high multiplicity of WT MVMp (2 PFU/cell) caused only a slight CPE, followed by full recovery of the culture. DNA replication and genome expression of F1 were significantly better in F111 rat fibroblasts (D’Abramo et al., 2005). The interaction between adenosine at the splicing branch point and the U2 snRNA is crucial for splicing (Moore et al., 1993). The G1970A substitution in MVMV was demonstrated to significantly improve large-intron splicing and increase both R2 and NS2 levels in A9 fibroblasts by modifying the interaction with endogenous U2 snRNA (Choi et al., 2005). It is therefore similarly possible that the substituted adenosine at nt 1955 alters binding of U2 snRNA to the large-intron splicing branch point in F111 rat fibroblasts. The significantly enhanced production of R2 and NS2 by F1 in F111 supports this hypothesis. NS2 is known to be involved in several MVM functions such as virus DNA replication (Naeger et al., 1990), mRNA translation (Naeger et al., 1993), nuclear egress of progeny virions in mouse cells (Eichwald et al., 2002) and particle assembly (Cotmore et al., 1997).

Current study does not reveal what mutation/s or their combination can be sufficient for the virus–host range switch from mouse to rat fibroblasts. Lymphotrophic MVMi was demonstrated to require at least two capsid amino acid alternations associated with sialic acid binding region in order to adapt to A9 fibroblasts (Ball-Goodrich and Tattersall, 1992; Agbandje-McKenna et al., 1998). Alternatively fibrotropism can be conferred to MVMi by combination of one of the silent substitutions facilitating NS2 production (G1967A or G1970A) and one of the additional VP2 amino acid changes at the position 399 (D399G or D399A) (D’Abramo et al., 2005). Thus we think that the extension of our study possibly can reveal very limited number of genomic changes in MVM genome, conferring trans-species host range change to the virus.

Materials and methods

Cell culture

A9 mouse fibroblast cells (Littlefield, 1964), NB324K simian virus 40-transformed human newborn kidney cells (Shein and Enders, 1962), F111 Fisher rat fibroblasts (Freeman et al., 1973), and PyF polyomavirus-transformed F111 cells (Guetta et al., 1990) were cultured in monolayers in Dulbecco modified Eagle medium (Gibco Laboratories) supplemented with 5% inactivated fetal bovine serum at 37 °C, 5% CO2.

Virus

MVMp was produced by transfection (see below) of its infectious clone pMM984 (Merchinsky et al., 1983) into A9 cells. After cell death, virus was extracted by standard procedure (Tattersall et al., 1976) and was not further passaged.

F1 mutant virus was produced by end point dilution of the MVMp-F111 isolate (see “Results”) in F111 cells followed by subsequent propagation in these cells. Typically 106 cells in a 150 mm plate were infected with 10−2 PFU/cell and ~10−3 PFU/plate was obtained. Resulting virus was checked by direct PCR and sequencing as well as by sequencing of its Plaque Purified isolates. In addition, F1 stocks were routinely checked by ARMS (see below). All controls did not reveal genomic heterogeneity.

Transfections and Infections

All transfections/co-transfections were done with FuGENE 6 transfection reagent according to the manufacturer’s (Roche) protocol. For MVMp infections, the desired host cells were seeded and 12 h later the growth medium was replaced by Dulbecco modified Eagle medium without serum (1/10 of a normal volume), containing active viral particles at the desired multiplicity of infection (MOI). After 1 h incubation with gentle shaking under the standard cell growth conditions (see above), the inoculum was removed, cells were washed with PBS and grown under the standard conditions (see above). For virus passage experiments, 106 cells were infected with 0.2 PFU/cell and cultured until cell death. Virus extracted was subsequently used for a further infection of the same cell-type with the same MOI.

Plaque assays/purification

Standard procedure (Tattersall and Bratton, 1983) was used to determine the amount of active virus particles (PFU) in our viral samples. Plaque purification was performed as described elsewhere (Tattersall, 1972). End point dilutions of mutant viruses in F111 cells were performed in 96 well plates according to general protocol (Mahy and Kangro, 1996).

PCR assays

Viral templates for PCR were treated with 20 μg/ml DNAse (NEB) for 1 h to remove contaminating genomic and viral Replicative Form DNAs.

To amplify the coding sequences of the MVM genome by a single reaction, the F117 (ATAAGGGTTCAAGGAGTTTA) and R4928 (CTGAATAGACAGTAGTCTTGGTTGAG) primers were used in the Expand Long Template PCR System (Roche). A prolonged initial denaturation of 95 °C for 10 min was introduced to destroy viral capsids. 35 thermal cycles consisting of denaturation at 95 °C for 45 s, annealing at 55 °C for 30 s, elongation at 72 °C for 5 min followed by a final elongation at 72 °C for 15 min were performed. Amplification-Refractory Mutation System (ARMS) allele-specific PCR (Newton et al., 1989) included one constant unsselective primer
and one allele-specific primer (Table 3). An initial denaturation of 95 °C for 10 min was used to destroy the viral capsids. Amplification consisted of 35 cycles of denaturation at 95 °C for 30 s, annealing for 30 s at a temperatures specific for each reaction (Table 3), and elongation at 72 °C for 30 s. A final elongation at 72 °C for 2 min was included. All reactions were performed in 50 μl volumes. Each reaction contained: 1 U of Taq polymerase (Super-Nova), 5 μl of 10X Taq buffer supplemented with 15 mM MgCl2 (Super-Nova), 100 μM each of dNTPs, 0.1 μM each of a selective and an unselective primer. Reaction products and a 100 bp DNA Ladder (NEB) were resolved by agarose gel (1.5%) electrophoresis (5 V/cm) and identified by staining with EtBr.

Four test primer sets for the ARMS allele-specific PCR assay were constructed. pP38-WT and pP38-F1 were made by PCR amplification of the region 3449-4867 in WT MVMp and F1 DNA respectively, using the primers F3449 (see Table 3) and R4867-ECori (CATCAAGTCTAAGGGAATTCC), which introduced an EcoRI endonuclease restriction site into the PCR product. The EcoRI-cut product was then cloned into the EcoRI site of the plasmid pGEM (Promega). To produce a PCR product that was then cloned into the EcoRI site of the plasmid pGEM (Promega). To produce pP38-WT/pP38-1955, MTVmp/F1 PCR-amplified DNA sequences, between two EcoRI sites (located at positions 1084 and 3522 of the MVM genome) were cloned into the EcoRI site of pGEM.

Sequencing

PCR products were purified by the Qiagen PCR Purification Kit and sequenced by standard chain-terminator methods. Sets of primers, located less than 500 bp from each other and covering the whole 117–4928 bp PCR product (see above) was employed to permit the sequencing of the entire amplified region. To avoid mistakes, at least two PCR products from separate reactions were sequenced for all viral samples. The sequence of MTVmp infectious clone pMM984 (Merchinsky et al., 1983) was determined between 117 and 4928 bp of the MTVmp genome. This sequence was aligned with DNA sequencing results of the samples of interest, using the NCBI BLAST online software. NCBI BLASTX was used to determine amino acid changes caused by identified DNA mutations.

Structural analysis of mutated residues

The coordinates for the MTVmp VP2 crystal structure (Kontou et al., 2005) (PDB accession number 1z14) was used to map the positions of the mutated residues onto the MTVmp capsid. Theicosahedral two-, three- and five-fold related monomers were generated by applying icosahedral symmetry operators to a reference monomer using the program O (Jones et al., 1991) on a Silicon graphics Octane workstation. The positions of the mutated residues were visualized and analyzed in the context of the viral capsid using the program COOT (Emsley and Cowtan, 2004), and graphically presented using the program PyMOL (Delano, 2002).

Cer transfection assays

Cer reporter sequence under the WT and mutant P38 promoters were constructed as follows. pP38[WT]-CAT was constructed by sub-cloning the Eco RV/Hpa II restriction endonuclease fragment (nt 383–5042 of MTVmp) taken from pMM984 (Merchinsky et al., 1983), into the pGEM plasmid (Promega) EcoRV site. Within this subclone the sequence between nt 2650 and 4212 was released by cleavage with Hind III and BglII, and the CAT coding sequence, released from pTS1 (Tratschin et al., 1986) with the same enzymes, was substituted in its place. Mutant pP38[1955]-CAT was made by substituting the WT MTV genome between BstEII (1884 bp) and Xhol (2070 bp) in pP38[WT]-CAT with sequence derived from PCR-amplified F1 virus DNA. pNS was constructed by releasing the NS coding region from pMM984 (Merchinsky et al., 1983) by cleavage with BamHI and Hind and cloning into pGEM EcoRV site.

All transfection experiments were performed in triplicate. 104 cells, seeded 12 h previously, in 6 well plates were co-transfected with one of the CAT reporter constructs (pP38[WT]-CAT or pP38 [1955]-CAT) (500 ng/well), pNS (250 ng/well), and pSV2[gal] (Promega) (250 ng/well) as an internal control. 48 h post-transfection (hpt) cells were harvested and 100 μl extract volumes were assayed for CAT and β-galactosidase present in each extract. CAT assays were performed in 96 well plates according to the original protocol (Pauwels et al., 1988). OD values were adjusted to the confluence of living cells of all types.

Southern analysis

1 or 20 cpm cells were washed with PBS and low molecular DNA was extracted by the Hirt method (McMaster et al., 1981). Viral DNA and Lambda DNA-HindIII marker (NEB) were resolved by agarose gel (0.8%) electrophoresis (5 V/cm), capillary transferred (Sambrook and Russel, 2001) to a Nytran nylon membrane (Schleicher & Schuell BioScience) and hybridized according to the manufacturer’s protocol to a mixed probe of MTVmp full-length genome and Lambda DNA, labeled by

Table 3

<table>
<thead>
<tr>
<th>Genome position (bp)</th>
<th>SNP</th>
<th>Allele-specific primers (name and sequence)</th>
<th>Unselective primer (name and sequence)</th>
<th>Reaction annealing temp. (°C)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3955</td>
<td>G</td>
<td>WT R1974-WT; 5′ gattgAttgcctttggctat</td>
<td>F1629; 5′ gcatcattgtctggaactat</td>
<td>61</td>
<td>345</td>
</tr>
<tr>
<td>3819</td>
<td>A</td>
<td>mutant R1974-M; 5′ gattgGgtccctttggctat</td>
<td>F3449; 5′ gatcattcctgactagctacg</td>
<td>54</td>
<td>365</td>
</tr>
<tr>
<td>3944</td>
<td>A</td>
<td>WT R3814-WT; 5′ gttcctaataacctcattaggt</td>
<td>F3449; 5′ gatcattcctgacagtacg</td>
<td>53</td>
<td>512</td>
</tr>
<tr>
<td>4453</td>
<td>A</td>
<td>WT R4473-WT; 5′ actcattgtagttccagcatt</td>
<td>F4092; 5′ cctactgggactaattatgc</td>
<td>58</td>
<td>381</td>
</tr>
<tr>
<td>4525</td>
<td>A</td>
<td>WT R4544-WT; 5′ catcaacaggttgcagtgtg</td>
<td>F4092; 5′ cctactgggactaattatgc</td>
<td>56</td>
<td>452</td>
</tr>
</tbody>
</table>

Single nucleotide polymorphisms (SNP) at the indicated mutant loci were checked for each one of the depicted genome positions by two allele-specific PCRs. Each reaction employed one of the shown selective allele-specific primers, (one designed to specifically amplify the wild-type [WT] and another the mutant [M] templates), along with the corresponding unselective primer.
random priming with 32P. After hybridization, membranes were exposed to phosphor-imager screens (5 h) with subsequent development by the phosphor-imager (FUJIFILM FLA-5100).

Northern analysis

mRNA of infected cells was extracted by the mRNA Direct Kit (Chemagen) 14 hpi and quantified spectrophotometrically. Equal amounts of mRNA from each sample were resolved with prolonged (8 h) electrophoresis (2 V/cm) in 1% agarose gels, containing 2.2 M formaldehyde following a standard protocol (Sambrook and Russel, 2001). RNA was then capillarily transferred to Nytran nylon membranes (Schleicher & Schuell BioScience) and hybridized according to the manufacturer’s protocol to an MVM genomic DNA probe labeled by random priming with 32P. Images were developed by the phosphor-imager as described for the Southern.

Western analysis

24 hpi total protein extraction was performed with RIPA buffer (Bio-Rad) and quantified by a modified Bradford assay (Bio-Rad Protein Assay Dye). Equal amounts of proteins from different samples were resolved by discontinuous SDS-Polyacrylamide gel (8% for VP, 18% for VP2) electrophoresis (2 V/cm) in 1% agarose gels, containing 2.2 M formaldehyde. Protein samples were resolved by discontinuous SDS-Polyacrylamide gel (8% for VP, 18% for VP2) electrophoresis (2 V/cm) in 1% agarose gels, containing 2.2 M formaldehyde. Protein samples were then capillarily transferred to nylon membranes (Amersham Biotech), using a Bio-Rad Mini-PROTEAN device, according to the manufacturer’s protocols. Immunoblotting was performed according to the standard protocol (Sambrook and Russel, 2001), using rabbit-raised polyclonal primary antibodies for VP and VP2 proteins, kindly provided by Jean Rommelaere (German Cancer Research Center) and Peroxidase-labeled anti-rabbit secondary Ab (Amersham Biotech). ECL was performed with Western Blotting Luminol Reagent (Santa Cruz) and membranes were exposed to Kodak ML films for 1 min.

In vivo infections

Neonate mice less than 16 h old were inoculated oral-nasally with $^{10^7}$ PFU/mouse of virus in 4 µl of saline. 12 dpc mouse embryos were inoculated by injection of $^{10^7}$ PFU/embryo of virus into the embryonic liver in utero as described previously (Itah et al., 2004a). After a further 48 hour incubation, both newborns and embryos were dissected, embedded in optimal Cutting Temperature (OCT), cryosectioned, and the sections were mounted on slides. MVM capsid protein distribution in the tissues was determined by immunohistochemistry using polyclonal anti-MVM capsid antisera as described previously (Itah et al., 2004b).

Acknowledgments

In memory of Professor Jacov Tal, friend and mentor. Without his expertise, skill and guidance, this work would not have been possible. Grants from the Israel Science Foundation, the German-Israeli Foundation for Scientific Research and Development, and the US National Science Foundation supported this work.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.virol.2008.06.042.

References

